
A Vignette for the R package, larkPeaks

The package larkPeaks provides functions in R for feature discovery in MALDI-TOF Spectra
using LARK [Clyde and Wolpert, 2007, Wolpert et al., 2010]. We take a Lévy random field modeling
approach to estimate, with uncertainty, the location and abundance of protein peaks in spectra. In
House et al. [2010], we describe our model in detail.

For this vignette, we assess a MALDI-TOF spectrum of a protein mixture for which we know
the contents. This mixture was used as an example in Section 6.3 of House et al. [2010] and includes
five known proteins. Measurements of one protein may appear across multiple peaks in spectra due
to properties of MALDI-TOF mass spectrometry. In the spectrum that we analyze for the known
mixture, there are 11 peaks (Figure 1).
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Figure 1: Spectrum of protein sample with known contents.

The primary function of interest in larkPeaks that may discovery the location and abundance
of the 11 peaks is called findPeaks. This function is complex and requires several argument
specifications to operate. Figure 2 lists the arguments and groups them by purpose within the
function, findPeaks:

There are two arguments to which final estimates for peak location and abundance are sensitive:
gauErr (the distribution for the random error observed in spectra) and gauKern (the peak shape).
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• MCMC specifications
– id: Numerical identifier for output stored as text.
– iterations: Number of MCMC iterations
– thin: Number by which to thin the MCMC draws; iterations/thin == total stored
– keepEnd: Number of samples to store at the end of MCMC; e.g., if iterations=1000, thin=10,

keepEnd=35, then 121 samples are stored
– movePr 5x1 vector of probabilities for the MCMC to Birth, Death, Update, Merge, Split;

e.g. movePr=c(.1,.1, .6, .1, .1)
– rwStd: 7 or 8 values for std. dev. of random walks of the following parameters: eta, loc,

res, phi, S, expPar[1], expPar[2], c
• Data

– y: Vector of intensities
– clockticks: Vector of clock ticks or time

• Starting values, model specifications, prior parameters
– loc: Vector of starting locations
– eta: Vector of starting concentrations
– res: Vector of starting resolutions
– gauKern: =0 if modeling with Gaussian kernel, =1 if modeling with Cauchy kernel
– exPks: Prior expected number of peaks
– minSignal: Percent of minimum signal, e.g., =0.075
– res.var: Variance for res given specRes
– specRes: Starting values for the overall, spectrum resolution (i.e., varRho in paper); see

below for details
– specRes.bounds: If specRes changes within a spectrum, then specRes is a vector, other-

wise it is a scalar, specRes=specRes.cutoff=max(clockticks)
– specRes.mean: Prior mean for specRes; length(specRes.mean)=length(specRes)
– specRes.var: Prior variance for specRes; length(specRes.var)=length(specRes)
– expPar 2 x 1 vector of exponential decay parameters; expPar[1]=eta0, expPar[2]=lambda0
– decay.var: Variance for expPar[2]
– phi: Starting value for phi
– phi.mean: Prior shape parameter for phi
– phi.var: Prior rate parameter for phi
– S: Starting value for percent signal
– S.mean: Prior mean of percent signal
– S.var: Prior variance of percent signal
– c: Starting value for zeta, Intensity mean; if fixC==1, c=mean(y)
– c.mean: Prior mean of zeta
– c.var: Prior variance of zeta
– fixC: Fix c, rather than solving for it
– gauErr: 1 if fitting a Gaussian Error model, and 0 if Gamma Error model

• Miscellaneous
– asBernOnly: 1 if return Bernoulli output only
– dump: Ignore; Set to 0
– plotStart: 1 if plot the starting locations, res, eta
– plotMa: Plot the Model Average
– micro: Conversion for microseconds; 1 clocktick = micro microseconds

Figure 2: Arguments for the function findPeaks
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Each of these arguments has two options, thus there are four scenarios that we can explore.

Scenario Notation Parameter Specification Interpretation in Model

00 CG gauKern=0, gauErr=0 Cauchy shaped peaks and Gamma error
01 CN gauKern=0, gauErr=1 Cauchy shaped peaks and Gaussian error
10 NG gauKern=1, gauErr=0 Gaussian shaped peaks and Gamma error
11 NN gauKern=1, gauErr=1 Gaussian shaped peaks and Gaussian error

In the sections that we follow we will implement findPeaks for the four scenarios.

1 Scenario 00: CG

To start, we load the library and data. knownPeaks includes three variables that provides the
data for one spectrum. These variables are clock, mz, and intensity. For this application,
knownPeaks$clock × 0.016µs scales the x-axis of Figure 1 to microseconds. knownPeaksLoc in-
cludes the peak locations in mz units.

> library(larkPeaks)

> data(knownPeaks)

> data(knownPeaksLoc)

Plot the data with the peak locations.

> plot(knownPeaks$mz, knownPeaks$intensity, type="l", xlab="mz", ylab="Intensity")

> rug(knownPeaksLoc$mz)

To re-create the spectrum with peak locations so that the x-axis is in clock-tick units, use the
function interp.m2t.

> locCl <- apply(matrix(knownPeaksLoc$mz), 1, interp.m2t, knownPeaks$clock,knownPeaks$mz)

> plot(knownPeaks$clock, knownPeaks$intensity, type="l",

xlab="Clock-ticks", ylab="Intensity")

> rug(locCl)

To start our analysis of knownPeaks, we make the following MCMC specifications.

> ID <- 1

> I <- 1000000

> T <- 1000

> KE <- 0

> MP <- c(.1,.1,.6,.1,.1) #Move probabilities

> RW <- c(.1,10,15,.01,.05,.05,.1,.1) #Random walk standard deviations

These specifications are application specific and are not default values. With the exception for ID

(the identification number is arbitrary), users of findpeaks must select the remaining parameters
to assure convergence and useful acceptance and rejection rates.

Now, we make the following model specifications. The rational for these specifications is de-
scribed in House et al. [2010]. Again, these specifications are not recommended as default values
and are relevant only for the data at hand, knownPeaks.
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> microseconds <- .016

> J <- 20

> R <- 200; Rvar <- .35^2; Rvar2 <- .7^2

> miS <- .075

> SM <- 0.90

> EP <- c( 7956.4, 2024.79)

> DV <- .5^2

> PH <- 0.00965

> PHV <- (PH*2)^2

In larkPeaks, we provide some functions to help with parameter specifications and starting
values, including getMomentS, getStartEta and getStartRes. Given an expected value for S

(defined in House et al., 2010 as ‘percent signal’), the function getMomentS provides both a default
variance specification for S and a set scale parameters for the prior distribution of S. Below, we
define the variance of S as varS using getMomentS.

> varS <- getMomentS(SM,1)[[2]]

The functions getStartEta and getStartRes provide, respectively, starting values for protein
abundances and peak resolutions given peak locations. For this application, we will start the
MCMC with peak locations that are scattered uniformly across the x-axis. Using getStartRes,
we set each peak resolution based on the FWHM procedure and the mean spectrum resolution R

that we defined above.

> startLoc <- seq(min(knownPeaks$clock)+5, max(knownPeaks$clock)-5, length=J)

> startRes <- getStartRes(length(startLoc),mu=R, sd=.35)

Selecting starting values for peak intensities can be complex. We may set these values using
information in the data or to arbitrary values of our choosing. For either approach, we can use
the function getStartEta. If we decide to use data-determined intensity specifications, we set the
argument dataDeter to 1. If not, we set dataDeter to a number less than zero ( e.g., -2) so that
intensities are calculated as a multiple of the smallest possible intensity the model will recognize.
The multiple equals the absolute value of what was assigned to dataDeter.

> startEta <- getStartEta(length(startLoc), dataDeter=-2, minSig=miS,

x=knownPeaks$clock, y=knownPeaks$intensity,

C=mean(knownPeaks$intensity), S=SM, startLoc, startRes, EP[1])

If we want the multiple to change for each peak, we simply set dataDeter to a numeric vector of
length equal to J , i.e., length(startLoc). In this case, J = 20, thus we could set dataDeter to
c(rep(-2,5), rep(-3, 5), rep(-4, 5), rep(-5,5)). Notice that each entry for dataDeter is
negative as well.

Now we are ready to implement findPeaks. Since we want to model the data so that we assume
the peaks shapes are Cauchy and the error distribution is Gamma, we set both arguments gauKern

and gauErr to 0.

> knPksCG <- findPeaks(id=ID,iterations=I, thin=T,keepEnd=KE, movePr=MP, rwStd=RW,

y=knownPeaks$intensity,clockticks=knownPeaks$clock,

loc=startLoc,eta=startEta,res=startRes,gauKern=0,
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exPks=J, minSig=miS,

res.var=Rvar, specRes=R, specRes.bounds=max(knownPeaks$clock),

specRes.mean=R, specRes.var=Rvar2,

expPar= EP, decay.var=DV,

phi=PH,phi.mean=PH, phi.var=PHV,

S=SM, S.mean= SM, S.var= varS,

c=mean(knownPeaks$intensity), c.mean=mean(knownPeaks$intensity),

c.var=c(),fixC=1,gauErr=0,

asBernOnly=0, dump=0, plotStart=1, plotMa=1, micro=microseconds)

The function findPeaks returns a list. The second element in the list is also a list that contains
12 elements which pertain directly to the MCMC parameter samples. We may visualize the model
average (MA) and the corresponding MA peak location estimates by selecting the appropriate
element from knPksCG and using the function, getMApks.

> mafCG <- knPksCG[[2]][[12]][,8]

> maCG <- getMApks(knPksCG[[2]][[12]][,1], knownPeaks$mz)

> plot(knownPeaks[,2:3], type="l", col="grey")

> lines(knownPeaks[,2], mafCG)

> points(knownPeaksLoc[,1], rep(0, dim(knownPeaksLoc)[[1]]), pch=19, col="green")

> rug(maCG[[1]], col="red")

To learn the peak locations from the model with the highest posterior density (HP), we use the
functions getMXpks and interp.t2m. The latter function scales the units for peak locations from
clock-ticks to mz.

> mxCGt <- getMXpks(findPeaksRes=knPksCG, burnin=0)

> mxCG <- apply(matrix(mxCGt[[3]]), 1, interp.t2m, knownPeaks$clock,knownPeaks$mz)

> rug(mxCG, col="blue") #add to the plot above

2 Scenarios 01, 10, 11

We use the above MCMC and model specifications, but we change the values for arguments
gauKern and gauErr.

> knPksCN <- findPeaks(id=ID,iterations=I, thin=T,keepEnd=KE, movePr=MP, rwStd=RW,

y=knownPeaks$intensity,clockticks=knownPeaks$clock,

loc=startLoc,eta=startEta,res=startRes,gauKern=0,

exPks=J, minSig=miS,

res.var=Rvar, specRes=R, specRes.bounds=max(knownPeaks$clock),

specRes.mean=R, specRes.var=Rvar2,

expPar= EP, decay.var=DV,

phi=PH,phi.mean=PH, phi.var=PHV,

S=SM, S.mean= SM, S.var= varS,

c=mean(knownPeaks$intensity), c.mean=mean(knownPeaks$intensity),

c.var=c(),fixC=1,gauErr=1,
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asBernOnly=0, dump=0, plotStart=1, plotMa=1, micro=microseconds)

> knPksNG <- findPeaks(id=ID,iterations=I, thin=T,keepEnd=KE, movePr=MP, rwStd=RW,

y=knownPeaks$intensity,clockticks=knownPeaks$clock,

loc=startLoc,eta=startEta,res=startRes,gauKern=1,

exPks=J, minSig=miS,

res.var=Rvar, specRes=R, specRes.bounds=max(knownPeaks$clock),

specRes.mean=R, specRes.var=Rvar2,

expPar= EP, decay.var=DV,

phi=PH,phi.mean=PH, phi.var=PHV,

S=SM, S.mean= SM, S.var= varS,

c=mean(knownPeaks$intensity), c.mean=mean(knownPeaks$intensity),

c.var=c(),fixC=1,gauErr=0,

asBernOnly=0, dump=0, plotStart=1, plotMa=1, micro=microseconds)

> knPksNN <- findPeaks(id=ID,iterations=I, thin=T,keepEnd=KE, movePr=MP, rwStd=RW,

y=knownPeaks$intensity,clockticks=knownPeaks$clock,

loc=startLoc,eta=startEta,res=startRes,gauKern=1,

exPks=J, minSig=miS,

res.var=Rvar, specRes=R, specRes.bounds=max(knownPeaks$clock),

specRes.mean=R, specRes.var=Rvar2,

expPar= EP, decay.var=DV,

phi=PH,phi.mean=PH, phi.var=PHV,

S=SM, S.mean= SM, S.var= varS,

c=mean(knownPeaks$intensity), c.mean=mean(knownPeaks$intensity),

c.var=c(),fixC=1,gauErr=1,

asBernOnly=0, dump=0, plotStart=1, plotMa=1, micro=microseconds)

To assess the differences between knPksCG, knPksCN, knPksNG and knPksNN, we use the function
provided in the appendix to create the following table.
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Table 1: Compares results for analyzing a spectrum with varying model assumptions that pertain
to the peak shape and the random error distribution. For Scenario CG, we assumed Cauchy shaped
peaks and Gamma error; for Scenario CN, we assumed Cauchy shaped peaks and Normal error;
for Scenario NG, we assumed Normal shaped peaks and Gamma error; and for Scenario NN, we
assumed Normal shaped peaks and Normal error. Notice that the number of peak estimates differ
dramitcally between the Gamma error models and the Gaussian Error models.

Scenario S φ ̺ η0 ω0 JPM JHP J▽

CG 0.90 2.61 96.43 78.26 22.80 42.24 42.00 28.00
CN 0.94 0.09 156.71 91.56 30.44 84.90 85.00 34.00
NG 0.89 2.35 73.90 91.29 26.21 49.11 49.00 29.00
NN 1.00 0.09 84.93 104.92 39.15 83.90 83.00 30.00

Appendix

We use the code in this appendix to assess and compare outcomes from the function findPeaks()

that are stored in objects knPksCG, knPksCN, knPksNG, and knPksNN.

> postSum <- function(out, BI,map, mxp, micro){

#out: results from findpeaks()

#BI: Burn-in; this BI must match that used to determine MA and HP peak estimates.

#map: peak locations from MA

#mxp: peak locations from HP model

#micro: number of microseconds per clock-tick

keep <- floor(BI*length(out$JVec)):length(out$JVec)

fpke <- micro*(unlist(out$expParVec[keep]))[seq(2,4*length(keep), by=4)]

fpke2 <- micro*(unlist(out$expParVec))[seq(2,4*length(keep), by=4)]

fpkl <- micro/(unlist(out$expParVec[keep]))[seq(4,4*length(keep), by=4)]

fpkl2 <- micro/(unlist(out$expParVec))[seq(4,4*length(keep), by=4)]

par(mfrow=c(3,2))

plot(out$JVec, type="l")

plot(out$specResVec, type="l")

plot(fpke2/micro, type="l")

plot(fpkl2/micro, type="l")

plot(out$phiVec, type="l")

plot(out$noSignalVec, type="l")

mnJ <- mean(out$JVec[keep])

mnSR <- mean(out$specResVec[keep])

mnFE <- mean(fpke)

mnFL <- mean(fpkl)
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mnPh <- mean(out$phiVec[keep])

mnNS <- mean(out$noSignalVec[keep])

vaJ <- var(out$JVec)#[keep])

vaSR <- var(out$specResVec[keep])

vaFE <- var(fpke)

vaFL <- var(fpkl)

vaPh <- var(out$phiVec[keep])

vaNS <- var(out$noSignalVec[keep])

maJ <- length(map)

mxJ <- length(mxp)

rowMn <- c(mnSR,mnFE,mnFL,mnPh,1-mnNS,mnJ, maJ,mxJ)

rowVa <- c(vaSR,vaFE,vaFL,vaPh,vaNS,vaJ, 0,0)

sumry <- rbind(rowMn, rowVa)

colnames(sumry) <- c("SpecRes", "ExpInt","ExpDec", "Phi", "S", "stochJ", "MA J", "HP J")

return(sumry)

}

> allSum <- matrix(0,8,8)

> colnames(allSum) <- c("SpecRes", "ExpInt","ExpDec", "Phi", "S", "stochJ", "MA J", "HP J")

> rownames(allSum) <- c("mnCG", "vaCG","mnCN", "vaCN","mnNG", "vaNG","mnNN", "vaNN")

> allSum[1:2,] <- postSum(knPksCG[[2]],.5,maCG[[1]], mxCG,microseconds)

> allSum[3:4,] <- postSum(knPksCN[[2]],.5,maCN[[1]], mxCN,microseconds)

> allSum[5:6,] <- postSum(knPksNG[[2]],.5,maNG[[1]], mxNG,microseconds)

> allSum[7:8,] <- postSum(knPksNN[[2]],.5,maNN[[1]], mxNN,microseconds)

> allSum <- allSum[,c(5,4,1,2,3,6,8,7)]

> allSum
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